Dictionary Definition

hyperventilation n : an increased depth and rate of breathing greater than demanded by the body needs; can cause dizziness and tingling of the fingers and toes and chest pain if continued

User Contributed Dictionary



ipacregion Canada


  1. the state of breathing faster or deeper than necessary


the state of breathing faster

Extensive Definition

In medicine, hyperventilation (or overbreathing) is the state of breathing faster and/or deeper than necessary, thereby reducing the carbon dioxide concentration of the blood below normal.
Hyperventilation can, but does not necessarily always cause symptoms such as numbness or tingling in the hands, feet and lips, lightheadedness, dizziness, headache, chest pain, slurred speech and sometimes fainting, particularly when accompanied by the Valsalva maneuver. Sometimes hyperventilation is induced for these same effects.


Stress or anxiety commonly are causes of hyperventilation; this is known as hyperventilation syndrome. Hyperventilation can also be brought about voluntarily, by taking many deep breaths. Hyperventilation can also occur as a consequence of various lung diseases, head injury, or stroke (central neurogenic hyperventilation, apneustic respirations, ataxic respiration, Cheyne-Stokes respirations or Biot's respiration). Lastly, in the case of metabolic acidosis, the body uses hyperventilation as a compensatory mechanism to increased acidity of the blood. In the setting of Diabetic Ketoacidosis, this is known as Kussmaul breathing - characterized by long, deep breaths.


In normal breathing, both the depth and frequency of breaths are varied by the neural system primarily in order to maintain normal amounts of carbon dioxide but also to supply appropriate levels of oxygen to the body's tissues. This is mainly done by measuring the carbon dioxide content of the blood; normally, a high carbon dioxide concentration signals a low oxygen concentration, as we breathe in oxygen and breathe out carbon dioxide at the same time, and the body's cells use oxygen to burn fuel molecules to carbon dioxide.
The gases in the alveoli of the lungs are nearly in equilibrium with the gases in the blood. Normally, less than 10% of the gas in the alveoli is replaced each breath. Deeper or quicker breaths exchange more of the alveolar gas with air and have the net effect of drawing more carbon dioxide out of the body, since the carbon dioxide concentration in normal air is very low.
The resulting low concentration of carbon dioxide in the blood is known as hypocapnia. Since carbon dioxide is held in the blood mostly in the form of carbonic acid, hypocapnia results in the blood becoming alkaline, i.e. the blood pH value rises. (Normally, this alkalosis would automatically be countered by reduced breathing, but for various reasons this doesn't happen when the neural control is not present.)
If carbon dioxide levels are high, the body assumes that oxygen levels are low, and accordingly, the brain's blood vessels dilate to assure sufficient blood flow and supply of oxygen. Conversely, low carbon dioxide levels (e.g. from hyperventilation) cause the brain's blood vessels to constrict, resulting in reduced blood flow to the brain and lightheadedness. The alkalinization of blood due to hypocapnia is the mechanism by which vessels constrict; it is theorized that myofibrillar calcium sensitivity is increased in the presence of low hydrogen ion concentration.
The high pH value resulting from hyperventilation also reduces the level of available calcium (hypocalcemia), which affects the nerves and muscles, causing constriction of blood vessels and subsequent parasthesia and lightheadedness. This occurs because alkalinization of the plasma proteins (mainly albumin) increases their calcium binding affinity, thereby reducing free ionized calcium levels.
Therefore, there are two main mechanisms that contribute to the cerebral vasoconstriction that is responsible for the lightheadedness, parasthesia, and fainting often seen with hyperventilation. One mechanism is that low carbon dioxide (hypocapnia) causes decreased hydrogen ion concentration (respiratory alkalosis), which causes blood vessels to constrict. The other mechanism is that the decrease in hydrogen ions (alkalosis) causes decreased freely ionized blood calcium, thereby causing cell membrane instability and subsequent vasoconstriction.
Though it seems counterintuitive, breathing too much can result in a decrease in the oxygen supply to the brain. Doctors sometimes artificially induce hyperventilation after head injury to reduce the pressure in the skull, though the treatment has potential risks.


See also

hyperventilation in Czech: Holotropní dýchání
hyperventilation in German: Hyperventilation
hyperventilation in Esperanto: Hiperventolado
hyperventilation in French: Hyperventilation
hyperventilation in Dutch: Hyperventilatie
hyperventilation in Japanese: 過換気症候群
hyperventilation in Polish: Hiperwentylacja
hyperventilation in Portuguese: Hiperventilação
hyperventilation in Finnish: Hyperventilaatio
hyperventilation in Swedish: Hyperventilation
hyperventilation in Ukrainian: Тахіпное
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1